To get this coupon, please scroll down
“This course contains the use of artificial intelligence”
Unlock the full potential of Retrieval-Augmented Generation (RAG) — the framework behind today’s most accurate, data-aware AI systems.
This comprehensive bootcamp takes you from the fundamentals of RAG architecture to enterprise-level deployment, combining theory, hands-on projects, and real-world use cases.
You’ll learn how to build powerful AI applications that go beyond simple chatbots — integrating vector databases, document retrievers, and large language models (LLMs) to deliver factual, explainable, and context-grounded responses.
What You’ll Learn
The core concepts of Retrieval-Augmented Generation (RAG) and why it’s transforming AI.
Building RAG pipelines from scratch using LangChain, LlamaIndex, and FAISS.
Implementing hybrid search (keyword vector) for smarter retrieval.
Creating multi-modal RAG systems that process text, images, and PDFs.
Building Agentic RAG workflows where intelligent agents plan, retrieve, and reason autonomously.
Optimizing RAG performance with prompt tuning, top-k selection, and similarity thresholds.
Adding security, compliance, and role-based governance to enterprise RAG pipelines.
Integrating RAG into real-world workflows like Slack, Power BI, and Notion.
Deploying complete front-end and back-end RAG systems using Streamlit and FastAPI.
Designing evaluation metrics (semantic similarity, precision, recall) to measure retrieval quality.
Tools and Technologies Covered
LangChain, LlamaIndex, FAISS, OpenAI API, CLIP, Sentence Transformers
Streamlit, FastAPI, Pandas, Slack SDK, Power BI Integration
Python, LLM Prompt Engineering, and Enterprise Security Frameworks
Real-World Hands-On Labs
Each section of the course includes interactive labs and Jupyter notebooks covering:
RAG Foundations – Build your first retrieval generation pipeline.
LangChain Integration – Connect document loaders, vector stores, and LLMs.
Performance Optimization – Hybrid, MMR, and context tuning.
Deployment – Launch full RAG applications via Streamlit & FastAPI.
Enterprise Use Cases – Finance, Healthcare, Aviation, and Legal systems.
Who This Course Is For
Developers and Data Scientists exploring AI application design.
Machine Learning Engineers building context-aware LLMs.
Tech professionals aiming to integrate retrieval-augmented AI into products.
Students and researchers eager to understand modern AI architectures like RAG.
Outcome
By the end of this course, you’ll confidently design, implement, and deploy end-to-end RAG systems — combining the power of LLMs with enterprise data for smarter, explainable, and production-ready AI applications.
Generative AI Skillpath: Zero to Hero in Generative AI
Machine Learning Bootcamp: Build ML models using GenAI
Statistics and Hypothesis Testing for Data science
ChatGPT for Data Engineers
Data Science Mastery 2025: Excel, Python & Tableau
Build On-Device AI
Generative AI : Create an impressive AI Art 2025
AI Masteclass - ChatGPT Gemini Midjourney Stable Diffusion
Python Programming: Build a Strong Foundation in Coding
Adobe Illustrator Course for Graphics Design
Programming Bootcamp with Python, JavaScript, C++, PHP MySql
Learn PHP Programming: Create Dynamic Websites with MYSQL
© Top Offers For You. All Rights Reserved.